

# Introduction

- Barb Wheeler
- Senior at Grand Valley State University (Michigan)
- Majoring in Integrated Science and Education with a minor in Elementary Certification
- I enjoy learning about our environment and ways in which we can be a more sustainable society.
- Why did I create this lesson plan?

Trees, Carbon, and You... What can you do? (5E Lesson Plan)

And Children Strategic Strategics

By: Barb Wheeler

# Engage (Questions to Think About)

- Can I grow enough trees to offset my carbon footprint?
- How many?
- Does the type of tree matter?
- What activity in your everyday life produces the greatest amount of carbon?

# Explore 1 (Carbon Footprint)

- We need to figure out how much CO2 we use in our everyday lives
- Fill out the Carbon Footprint worksheet
- This is a rough estimate, but it's a fairly easy worksheet fill out
- You can definitely find more accurate carbon footprint calculators online depending on how in depth you'd like to go
- How many pounds of CO2 do you use in a year?

# Explore 2 (Calculating Carbon Sequestration)

- Next, we're going to look at information about how much carbon certain trees sequester when they're planted in an urban setting
- The information we'll be looking at is from the U.S. Department of Energy- Energy Information Administration (1998)

#### URBAN FURESIRY CARBON SEQUESIRATION WURKSHEET

and in a suppl

(Calculate each reporting year on a separate worksheet; photocopy if more than one sheet is required)

#### Reporting year: 19\_\_\_\_

and the set of the side

| A.<br>Species Characteristics<br>(Refer to Table 1) |                          |                                | B.<br>Tree<br>Age | C.<br>Number<br>of Age 0 | D.<br>Survival<br>Factor | E.<br>Number<br>of            | F.<br>Annual<br>Sequestration                | G.<br>Carbon<br>Sequestered |
|-----------------------------------------------------|--------------------------|--------------------------------|-------------------|--------------------------|--------------------------|-------------------------------|----------------------------------------------|-----------------------------|
| Name                                                | Tree<br>Type<br>(H or C) | Growth<br>Rate<br>(S, M, or F) | 5                 | Trees<br>Planted         | (Refer to<br>Table 2)    | Surviving<br>Trees<br>(C × D) | Rate<br>(Ibs./tree)<br>(Refer to<br>Table 2) | (Ibs)<br>(E x F)            |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          |                                |                   |                          |                          |                               |                                              |                             |
|                                                     |                          | L                              | Το                | tal Pounds               | of Carbon                | Sequeste                      | red                                          |                             |

#### Table 2: Survival Factors and Annual Carbon Sequestration Rates for Common Urban Trees

\_

| Tree Age | Survival Factors by<br>Growth Rate |          |       | Annual Sequestration Rates by Tree Type and Growth Rate<br>( lbs. carbon/tree/year) |              |              |      |              |      |  |
|----------|------------------------------------|----------|-------|-------------------------------------------------------------------------------------|--------------|--------------|------|--------------|------|--|
| (yrs)    |                                    |          |       |                                                                                     | Hardwood     |              |      | Conifer      |      |  |
|          | Slow                               | Moderate | Fast  | Slow                                                                                | Moderate     | Fast         | Slow | Moderate     | Fast |  |
| 0        | 0.873                              | 0.873    | 0.873 | 1.3                                                                                 | 1.9          | 2.7          | 0.7  | 1.0          | 1.4  |  |
| 1        | 0.798                              | 0.798    | 0.798 | 1.6                                                                                 | 2.7          | 4.0          | 0.9  | 1.5          | 2.2  |  |
| 2        | 0.736                              | 0.736    | 0.736 | 2.0                                                                                 | 3.5          | 5.4          | 1.1  | 2.0          | 3.1  |  |
| 3        | 0.706                              | 0.706    | 0.706 | 2.4                                                                                 | 4.3          | 6.9          | 1.4  | 2.5          | 4.1  |  |
| 4        | 0.678                              | 0.678    | 0.678 | 2.8                                                                                 | 5.2          | 8.5          | 1.6  | 3.1          | 5.2  |  |
| 5        | 0.658                              | 0.658    | 0.658 | 3.2                                                                                 | 6.1          | 10.1         | 1.9  | 3.7          | 6.4  |  |
| 6        | 0.639                              | 0.639    | 0.644 | 3.7                                                                                 | 7.1          | 11.8         | 2.2  | 4.4          | 7.6  |  |
| 7        | 0.621                              | 0.621    | 0.630 | 4.1                                                                                 | 8.1          | 13.6         | 2.5  | 5.1          | 8.9  |  |
| 8        | 0.603                              | 0.603    | 0.616 | 4.6                                                                                 | 9.1          | 15.5         | 2.8  | 5.8          | 10.2 |  |
| 9        | 0.585                              | 0.589    | 0.602 | 5.0                                                                                 | 10.2         | 17.4         | 3.1  | 6.6          | 11.7 |  |
| 10       | 0.568                              | 0.576    | 0.589 | 5.5                                                                                 | 11.2         | 19.3         | 3.5  | 7.4          | 13.2 |  |
| 11       | 0.552                              | 0.564    | 0.576 | 6.0                                                                                 | 12.3         | 21.3         | 3.8  | 8.2          | 14.7 |  |
| 12       | 0.536                              | 0.551    | 0.563 | 6.5                                                                                 | 13.5         | 23.3         | 4.2  | 9.1          | 16.3 |  |
| 13       | 0.524                              | 0.539    | 0.551 | 7.0                                                                                 | 14.6         | 25.4         | 4.6  | 9.9          | 17.9 |  |
| 14       | 0.512                              | 0.527    | 0.539 | 7.5                                                                                 | 15.8         | 27.5         | 4.9  | 10.8         | 19.6 |  |
| 15       | 0.501                              | 0.516    | 0.527 | 8.1                                                                                 | 16.9         | 29.7         | 5.3  | 11.8         | 21.4 |  |
| 16       | 0.490                              | 0.504    | 0.516 | 8.6                                                                                 | 18.1         | 31.9         | 5.7  | 12.7         | 23.2 |  |
| 17       | 0.479                              | 0.493    | 0.505 | 9.1                                                                                 | 19.4         | 34.1         | 6.1  | 13.7         | 25.0 |  |
| 18       | 0.469                              | 0.483    | 0.495 | 9.7                                                                                 | 20.6         | 36.3         | 6.6  | 14.7         | 26.9 |  |
| 19       | 0.459                              | 0.472    | 0.484 | 10.2                                                                                | 21.9         | 38.6         | 7.0  | 15.7         | 28.8 |  |
| 20       | 0.448                              | 0.462    | 0.474 | 10.8                                                                                | 23.2         | 41.0         | 7.4  | 16.7         | 30.8 |  |
| 21       | 0.439                              | 0.452    | 0.464 | 11.4                                                                                | 24.4         | 43.3         | 7.9  | 17.8         | 32.8 |  |
| 22       | 0.429                              | 0.442    | 0.454 | 12.0                                                                                | 25.8         | 45.7         | 8.3  | 18.9         | 34.9 |  |
| 23       | 0.419                              | 0.433    | 0.445 | 12.5                                                                                | 27.1         | 48.1         | 8.8  | 20.0         | 37.0 |  |
| 24       | 0.410                              | 0.424    | 0.435 | 13.1                                                                                | 28.4         | 50.6         | 9.2  | 21.1         | 39.1 |  |
| 25       | 0.401                              | 0.415    | 0.426 | 13.7                                                                                | 29.8         | 53.1         | 9.7  | 22.2         | 41.3 |  |
| 26       | 0.392                              | 0.406    | 0.417 | 14.3                                                                                | 31.2         | 55.6         | 10.2 | 23.4         | 43.5 |  |
| 27       | 0.384                              | 0.398    | 0.409 | 15.0                                                                                | 32.5         | 58.1         | 10.7 | 24.6         | 45.7 |  |
| 28       | 0.375                              | 0.389    | 0.400 | 15.6                                                                                | 33,9         | 60,7         | 11.2 | 25.8         | 48.0 |  |
| 29       | 0.367                              | 0.381    | 0.392 | 16.2                                                                                | 35.3         | 63.3         | 11.7 | 27.0         | 50.3 |  |
| 20       | 0 350                              | 0 373    | 0 383 | 16.8                                                                                | 26.8         | 65.0         | 12.2 | 28.2         | 527  |  |
| 21       | 0.357                              | 0.375    | 0.365 | 10.0                                                                                | 28.2         | 68.5         | 12.2 | 20.2<br>20.5 | 55.1 |  |
| 22       | 0.332                              | 0.305    | 0.375 | 19.1                                                                                | 30.2<br>20.7 | 71.2         | 12.7 | 29.5         | 57.5 |  |
| 32       | 0.344                              | 0.356    | 0.307 | 10.1                                                                                | 35.1<br>41.1 | /1.2<br>72.8 | 13.5 | 30.7         | 50.0 |  |
| 33<br>34 | 0.337                              | 0.343    | 0.349 | 18.7                                                                                | 41.1         | 75.8         | 13.8 | 33.3         | 62.4 |  |
| 35       | 0.323                              | 0.336    | 0.339 | 20.0                                                                                | 44.1         | 79.3         | 14.9 | 34.7         | 64.9 |  |

#### Table 2: Survival Factors and Annual Carbon Sequestration Rates forCommon Urban Trees (Cont'd)

| Tree Age | Survival Factors by<br>Growth Rate |          |       | Annual Sequestration Rates by Tree Type and Growth Rate<br>( Ibs. carbon/tree/year) |          |       |         |          |       |  |
|----------|------------------------------------|----------|-------|-------------------------------------------------------------------------------------|----------|-------|---------|----------|-------|--|
| (yrs)    |                                    |          |       | Hardwood                                                                            |          |       | Conifer |          |       |  |
|          | Slow                               | Moderate | Fast  | Slow                                                                                | Moderate | Fast  | Slow    | Moderate | Fast  |  |
| 36       | 0.316                              | 0.329    | 0.329 | 20.7                                                                                | 45.6     | 82.0  | 15.5    | 36.0     | 67.5  |  |
| 37       | 0.310                              | 0.322    | 0.320 | 21.4                                                                                | 47.1     | 84.8  | 16.0    | 37.3     | 70.1  |  |
| 38       | 0.303                              | 0.315    | 0.310 | 22.0                                                                                | 48.6     | 87.6  | 16.6    | 38.7     | 72.7  |  |
| 39       | 0.297                              | 0.308    | 0.301 | 22.7                                                                                | 50.2     | 90.4  | 17.2    | 40.1     | 75.3  |  |
| 40       | 0.291                              | 0.302    | 0.293 | 23.4                                                                                | 51.7     | 93.2  | 17.7    | 41.5     | 78.0  |  |
| 41       | 0.285                              | 0.296    | 0.284 | 24.1                                                                                | 53.3     | 96.1  | 18.3    | 42.9     | 80.7  |  |
| 42       | 0.279                              | 0.289    | 0.276 | 24.8                                                                                | 54.8     | 99.0  | 18.9    | 44.3     | 83.4  |  |
| 43       | 0.273                              | 0.283    | 0.268 | 25.4                                                                                | 56.4     | 101.9 | 19.5    | 45.8     | 86.2  |  |
| 44       | 0.267                              | 0.277    | 0.260 | 26.1                                                                                | 58.0     | 104.8 | 20.1    | 47.2     | 89.0  |  |
| 45       | 0.261                              | 0.269    | 0.253 | 26.8                                                                                | 59.6     | 107.7 | 20.7    | 48.7     | 91.8  |  |
| 46       | 0.256                              | 0.261    | 0.245 | 27.6                                                                                | 61.2     | 110.7 | 21.3    | 50.2     | 94.7  |  |
| 47       | 0.251                              | 0.254    | 0.238 | 28.3                                                                                | 62.8     | 113.6 | 22.0    | 51.7     | 97.5  |  |
| 48       | 0.245                              | 0.247    | 0.231 | 29.0                                                                                | 64.5     | 116.6 | 22.6    | 53.2     | 100.4 |  |
| 49       | 0.240                              | 0.239    | 0.225 | 29.7                                                                                | 66.1     | 119.6 | 23.2    | 54.8     | 103.4 |  |
| 50       | 0.235                              | 0.232    | 0.218 | 30.4                                                                                | 67.8     | 122.7 | 23.9    | 56.3     | 106.3 |  |
| 51       | 0.230                              | 0.226    | 0.212 | 31.1                                                                                | 69.4     | 125.7 | 24.5    | 57.9     | 109.3 |  |
| 52       | 0.225                              | 0.219    | 0.206 | 31.9                                                                                | 71.1     | 128.8 | 25.2    | 59.4     | 112.3 |  |
| 53       | 0.221                              | 0.213    | 0.199 | 32.6                                                                                | 72.8     | 131.8 | 25.8    | 61.0     | 115.4 |  |
| 54       | 0.216                              | 0.207    | 0.193 | 33.4                                                                                | 74.5     | 134.9 | 26.5    | 62.6     | 118.4 |  |
| 55       | 0.211                              | 0.201    | 0.188 | 34.1                                                                                | 76.2     | 138.0 | 27.2    | 64.2     | 121.5 |  |
| 56       | 0.207                              | 0.195    | 0.182 | 34.8                                                                                | 77.9     | 141.2 | 27.8    | 65.9     | 124.6 |  |
| 57       | 0.203                              | 0.189    | 0.177 | 35.6                                                                                | 79.6     | 144.3 | 28.5    | 67.5     | 127.8 |  |
| 58       | 0.198                              | 0.184    | 0.171 | 36.3                                                                                | 81.3     | 147.5 | 29.2    | 69.2     | 130.9 |  |
| 59       | 0.194                              | 0.178    | 0.166 | 37.1                                                                                | 83.0     | 150.6 | 29.9    | 70.8     | 134.1 |  |

#### Table 1. Common Urban Tree Species

| Species                                   |   | Growth<br>Rate | Species                                  | Type | Growth<br>Rate |
|-------------------------------------------|---|----------------|------------------------------------------|------|----------------|
| Ailanthus, Ailanthus altissima            | Н | F              | Maple, bigleaf, Acer macrophyllum        | Н    | S              |
| Alder, European, Alnus glutinosa          | Н | F              | Maple, Norway, Acer platanoides          | Н    | М              |
| Ash, green, Fraxinus pennsylvanica        | Н | F              | Maple, red, Acer rubrum                  | Н    | М              |
| Ash, mountain, American, Sorbus americana | Н | М              | Maple, silver, Acer saccharinum          | Н    | Μ              |
| Ash, white, Fraxinus americana            | Н | F              | Maple, sugar, Acer saccharum             | Н    | S              |
| Aspen, bigtooth, Populus grandidentata    | Н | М              | Mulberry, red, Morus rubra               | Н    | F              |
| Aspen, quaking, Populus tremuloides       | Н | F              | Oak, black, Quercus velutina             | Н    | М              |
| Baldcypress, Taxodium distichum           | С | F              | Oak, blue, Quercus douglasii             | Н    | М              |
| Basswood, American, Tilia americana,      | Н | F              | Oak, bur, Quercus macrocarpa             | Н    | S              |
| Beech, American, Fagus grandifolia        | Н | S              | Oak, California black, Quercus kelloggii | Н    | S              |
| Birch, paper (white), Betula papyrifera   | Н | М              | Oak, California White, Quercus lobata    | Н    | М              |
| Birch, river, Betula nigra                | Н | Μ              | Oak, canyon live, Quercus chrysolepsis   | Н    | S              |
| Birch, yellow, Betula alleghaniensis      | Н | S              | Oak, chestnut, Quercus prinus            | Н    | S              |
| Boxelder, Acer negundo                    | Н | F              | Oak, Chinkapin, Quercus muehlenbergii    | Н    | М              |
| Buckeye, Ohio, Aesculus glabra            | Н | S              | Oak, Laurel, Quercus laurifolia          | Н    | F              |
| Catalpa, northern, Catalpa speciosa       | Н | F              | Oak, live, Quercus virginiana            | Н    | F              |
| Cedar-red, eastern, Juniperus virginiana  | С | М              | Oak, northern red, Quercus rubra         | Н    | F              |
| Cedar-white, northern, Thuja occidentalis | С | М              | Oak, overcup, Quercus lyrata             | Н    | S              |
| Cherry, black, Prunus serotina            | Н | F              | Oak, pin, Quercus palustris              | Н    | F              |
| Cherry, pin, Prunus pennsylvanica         | Н | М              | Oak, scarlet, Quercus coccinea           | Н    | F              |
| Cottonwood, eastern, Populus deltoides    | Н | М              | Oak, swamp white, Quercus bicolor        | Н    | М              |
| Crabapple, Malus spp.                     | Н | Μ              | Oak, water, Quercus nigra                | Н    | М              |
| Cucumbertree, Magnolia acuminata          | Н | F              | Oak, white, Quercus alba                 | Н    | S              |
| Dogwood, flowering, Cornus florida        | Н | S              | Oak, willow, Quercus phellos             | Н    | М              |
| Elm, American, Ulmus americana            | Н | F              | Pecan, Carya illinoensis                 | Н    | S              |
| Elm, Chinese, Ulmus parvifolia            | Н | М              | Pine, European black, Pinus nigra        | С    | S              |
| Elm, rock, Ulmus thomasii                 | Н | S              | Pine, jack, Pinus banksiana              | С    | F              |
| Elm, September, Ulmus serotina            | Н | F              | Pine, loblolly, Pinus taeda              | С    | F              |
| Elm, Siberian, Ulmus pumila               | Н | F              | Pine, longleaf, Pinus palustris          | С    | F              |
| Elm, slippery, Ulmus rubra                | Н | М              | Pine, ponderosa, Pinus ponderosa         | С    | F              |
| Fir, balsam, Abies balsamea               | С | S              | Pine, red, Pinus resinosa                | С    | F              |
| Fir, Douglas, Pseudotsuga menziesii       | С | F              | Pine, Scotch, Pinus sylvestris           | С    | S              |
| Ginkgo, Ginkgo biloba                     | Н | S              | Pine, shortleaf, Pinus echinata          | С    | F              |
| Hackberry, Celtis occidentalis            | Н | F              | Pine, slash, Pinus elliottii             | С    | F              |
| Hawthorne, Crataegus spp.                 | Н | М              | Pine, Virginia, Pinus virginiana         | С    | М              |
| Hemlock, eastern, Tsuga canadensis        | С | М              | Pine, white eastern, Pinus strobus       | С    | F              |
| Hickory, bitternut, Carya cordiformis     | Н | S              | Poplar, yellow, Liriodendron tulipifera  | Н    | F              |
| Hickory, mockernut, Carya tomentosa       | Н | М              | Redbud, eastern, Cercis canadensis       | Н    | Μ              |
| Hickory, shagbark, Carya ovata            | Н | S              | Sassafras, Sassafras albidum             | Н    | М              |
| Hickory, shellbark, Carya laciniosa       | Н | S              | Spruce, black, Picea mariana             | С    | S              |
| Hickory, pignut, Carya glabra             | Н | М              | Spruce, blue, Picea pungens              | С    | М              |
| Holly, American, Ilex opaca               | Н | S              | Spruce, Norway, Picea abies              | С    | М              |
| Honeylocust, Gleditsia triacanthos        | Н | F              | Spruce, red, Picea rubens                | С    | S              |
| Hophornbeam, eastern, Ostrya virginiana   | Н | S              | Spruce, white, Picea glauca              | С    | М              |
| Horsechestnut, common, Aesculus           | Н | F              | Sugarberry, Celtis laevigata             | Н    | F              |
| hippocastanum                             |   |                |                                          |      |                |
| Kentucky coffeetree, Gymnocladus dioicus  | С | F              | Sweetgum, Liquidambar styraciflua        | Н    | F              |
| Linden, little-leaf, Tilia cordata        | Н | F              | Sycamore, Platanus occidentalis          | Н    | F              |
| Locust, black, Robinia pseudoacacia       | Н | F              | Tamarack, Larix laricina                 | С    | F              |
| London plane tree Platanus_X_acerifolia   | Н | F              | Walnut, black, Juglans nigra             | Н    | F              |
| Magnolia, southern, Magnolia grandifolia  | Н | М              | Willow, black, Salix nigra               | Н    | F              |

Type: H = Hardwood, C = Conifer Growth Rate: S = Slow, M = Moderate, F = Fast

## Carbon Seq. of Local Michigan Trees Tree Name, Tree Type, and Growth Rate:

- American Basswood: Hard and Fast
- American Beech: Hard and Slow
- American Elm: Hard and Fast
- Black Cherry: Hard and Fast
- Boxelder: Hard and Fast
- Bur Oak: Hard and Slow
- Eastern Cottonwood: Hard and Moderate
- Hackberry: Hard and Fast
- Honey Locust: Hard and Fast
- Northern Red Oak: Hard and Fast

Northern White Cedar: Conifer and Moderate

- Paper Birch: Hard and Moderate
- Pin Oak: Hard and Fast
- Red Maple: Hard and Moderate
- Shagbark Hickory: Hard and Slow
- Silver Maple: Hard and Moderate
- Sugar Maple: Hard and Slow
- Quaking Aspen: Hard and Fast
- Yellow Poplar: Hard and Fast
- White Ash: Hard and Fast
- Yellow Birch: Hard and Slow

# Example:

#### Box Elder





How to Fill out the Sequestration Worksheet

• A. Species Characteristics:

Name- Box Elder Tree Type- Hard Growth Rate- Fast

# How to Fill out the Sequestration Worksheet Cont'd

• B. Tree Age

(How long it's been planted after starting at the standard size)

### Let me explain...

"The tables included for estimating sequestration were designed for reporters who have planted ordinary, nursery- raised trees, typically sold in 15-gallon containers or balled and burlapped. <u>Such "standard"</u> <u>trees are usually approximately one inch in diameter at</u> <u>4.5 feet above the ground when planted.</u> For the purposes of this method, age is measured from the time the tree is planted. Therefore, standard- sized trees are designated as age 0 when planted."

# How to Fill out the Sequestration Worksheet Cont'd

- B. Tree Age (How long it's been planted after starting at the standard size): 3 years
- C. Number of Age 0 Trees Planted: 10
- D. Survival Factor: 0.706
- E. Number of Surviving Trees (C x D): 7.06
- F. Annual Sequestration Rate: 6.9 lbs. carbon/tree/ year
- G. Carbon Sequestered (E x F): 48.7 lbs

#### Fill out one more row...

So that we're all on the same page...

- A. Northern White Cedar, Conifer (C), Moderate (M)
- B. 8 years
- C. 15 trees

Continue filling out the rest of the row using Table 2...

I added a few trees for you and filled out the table to save time...

Add up column G (Total lbs of Carbon Sequestered)

Then multiply that value by 3.67 and STOP! ©

## How Much?

Did you all get around 1,435 lbs of CO2 sequestered?

• Let's go back to our Carbon Footprint and examine our numbers further...

• Divide your carbon footprint by the amount of pounds of CO2 sequestered

# Explain (Analyze Data)

- How many sets of trees do you need to offset your carbon footprint?
- How many actual trees would that be? (# of sets x 45 trees) i.e. I needed 1.4 sets of trees or about 63 trees to offset my carbon footprint
- Keep in mind that this was just a random assortment of trees that I chose. There are many variables (tree type/age/amount) that determine how much carbon a tree will sequester.

# Explain (Answer our Engage Questions)

- Can I grow enough trees to offset my carbon footprint?
- It's definitely possible if you utilize your resources and have space to plant trees; it also takes dedication
- How many?
- It depends on age/type of trees you want to use
- Does the kind of tree matter?

Yes, preferably trees that grow in your local area (we looked at MI trees); Hardwood with a fast growth rate sequester the most carbon

# Explain

# (What does this all mean?)

Purpose of this lesson:

- Shows students how important trees truly are to both humans and our environment
- Helps students see how humans impact our environment (carbon footprint)
- It gives students a possible solution (planting trees) in order to help our environment
- Expands students awareness of using techniques to slow climate change
- Ultimately, students should be thinking about the environment we live in and the ways humans can give back

# Elaborate

- Begin a tree planting project; simply plant trees in your school yard or community. (Get students outside!)
- Observe and collect data for tree growth over time
- Research deforestation
- Calculate the amount of trees needed to offset your entire school's carbon footprint. How much space would be needed to do so?
- Look into other ways you can reduce your carbon footprint (recycle, use less water/electricity, etc.)

# Evaluate

- Ask your students questions about the activities they've completed (i.e. give them a scenario about planting the "best" (sequester the most carbon) trees to cancel their school's carbon footprint)
- Ask students to explain the purpose of this lesson
- Ask students how they will incorporate what they've learned into their daily lives

# Final Thought...

In regards to caring for our environment...

Instead of asking ourselves, "Why?"

We should ask ourselves, "Why not?"



Carbon Footprint

http://www.teachengineering.org/view\_lesson.php?url=collection/cub\_/lessons/ cub\_whatkindoffootprint/cub\_footprint\_lesson1.xml

• Michigan Trees

http://www.outdoor-michigan.com/Trees.htm

Carbon Sequestration

http://www.epa.gov/climatechange/Downloads/method-calculating-carbonsequestration-trees-urban-and-suburban-settings.pdf

• Pictures of Michigan Trees

http://www.outdoor-michigan.com/Trees.htm

• Tree Jokes

http://www.swagus.com/lets-make-like-a-tree-and-leaf-tshirt.html

http://cheezburger.com/6501156864

# **Contact Information**

• Barb Wheeler

 Email Address: wheeleba@mail.gvsu.edu

 Weebly Site: barbarawheeler.weebly.com

